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The evolution of diversity in ancient
ecosystems: a review

S. Conway Morris
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK

On a perfect planet, such as might be acceptable to a physicist, one might predict that from its origin the
diversity of life would grow exponentially until the carrying capacity, however de¢ned, was reached. The
fossil record of the Earth, however, tells a very di¡erent story. One of the most striking aspects of this
record is the apparent evolutionary longueur, marked by the Precambrian record of prokaryotes and
primitive eukaryotes, although our estimates of microbial diversity may be seriously incomplete.
Subsequently there were various dramatic increases in diversity, including the Cambrian èxplosion' and
the radiation of Palaeozoic-style faunas in the Ordovician. The causes of these events are far from
resolved. It has also long been appreciated that the history of diversity has been punctuated by important
extinctions. The subtleties and nuances of extinction as well as the survival of particular clades have to
date, however, received rather too little attention, and there is still a tendency towards blanket assertions
rather than a dissection of these extraordinary events. In addition, some but perhaps not all mass
extinctions are characterized by long lag-times of recovery, which may re£ect the slowing waning of
extrinsic forcing factors or alternatively the incoherence associated with biological reassembly of stable
ecosystems. The intervening periods between the identi¢ed mass extinctions may be less stable and
benign than popularly thought, and in particular the frequency of extraterrestrial impacts leads to
predictions of recurrent disturbance on time-scales signi¢cantly shorter than the intervals separating the
largest extinction events. Even at times of quietude it is far from clear whether biological communities
enjoy stability and interlocked stasis or are dynamically reconstituted at regular intervals. Finally, can we
yet rely on the present depictions of the rise and falls in the levels of ancient diversity? Existing data is
almost entirely based on Linnean taxa, and the application of phylogenetic systematics to this problem is
still in its infancy. Not only that, but even more intriguingly the pronounced divergence in estimates of
origination times of groups as diverse as angiosperms, diatoms and mammals in terms of the fossil record
as against molecular data point to the possibilities of protracted intervals of geological time with a
cryptic diversity. If this is correct, and there are alternative explanations, then some of the mystery of
adaptive radiations may be dispelled, in as much as the assembly of key features in the stem groups
could be placed in a gradualistic framework of local adaptive response punctuated by intervals of
opportunity.
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1. INTRODUCTION

It is John Phillips (1860) who is generally credited with
¢rst plotting a history of diversity as revealed by the fossil
record (¢gure 1, upper left). Although schematic, his
diagram has several features of interest. It depicts the
triple peaks of Palaeozoic, Mesozoic and Cenozoic
diversity, divided by the caesuras of the end-Permian and
end-Cretaceous events. Interestingly, the respective dips in
the highs of Palaeozoic and Mesozoic diversity were
attributed to taphonomic failure, a problem that still dogs
any analysis of ancient diversity. Phillips (1860) also recog-
nized the precipitous increase in Cenozoic diversity. Thus,
within a year of the ¢rst edition of Darwin's Origin of species
the basic information on the history of organic diversity
was available, with Phillips (1860) not only drawing atten-
tion to taphonomic lacuna but also in the pages preceding
his ¢gure 4 making some preliminary attempts to quantify
his analysis.

It took more than 100 years, however, for serious
interest in this history to be rekindled. First were the
pioneering formulations of Newell (1967),Valentine (1969,
1973) andTappan (1969), but the subsequent enterprise has
been strongly in£uenced by the massive compilations, in
part unpublished, by Sepkoski (1992) (¢gure 1) and an
important series of analytical papers (Sepkoski 1978, 1979,
1981, 1988, 1993; see, also, Sepkoski 1997). The analysis of
diversity and the resurgence of interest in mass extinctions
remain a principal focus for palaeobiology (see, for
example, Signor 1990; Benton 1990; Valentine 1990;
Erwin 1996a; Foote 1996), and has reached a certain
stage of maturity. In addition to analysis of marine inver-
tebrate diversity, comparable compilations for land plants
(Niklas et al. 1983) and non-marine tetrapods (Benton
1985) are also available. Earlier concerns that the patterns
of diversity were largely artefacts, controlled by such
factors as area or volume of fossiliferous sediment, diver-
sity `hot-spots' centred on monographic treatment and
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fossil Lagersta« tten, and a bias in favour of the preservation
of younger sediments (the `Pull of the Recent') have been
quelled if not dismissed (see Sepkoski et al. 1981). Even so,
the shape of the curve of organic diversity remains conten-
tious. Thus Benton (1995), employing the data from his
edited compilation of Fossil record 2 (Benton 1993), identi-
¢ed in general an exponential increase in Phanerozoic
diversity. This, however, was refuted by the critical reana-
lysis of Courtillot & Gaudemer (1996) who rea¤rmed the
basic pattern identi¢ed earlier by J. J. Sepkoski of diversity
curves governed by logistical growth and interrupted on
occasion by mass extinctions of varying severity.
There is a continuing shift in research emphasis in

universities and happily to a lesser extent in natural
history museums away from primary systematics and the
monographic treatment of fossil groups. It is perhaps ques-
tionable, therefore, whether any updated databases
produced in the next few years based on the precepts of
Linnean taxonomy of generic or familial diversity will
lead to a radical revision of current depictions of the
histories of diversity, of which marine life remains the
best known (¢gure 1). The only exception to this trend in
data accumulation might appear to be the substantial
growth in the study of fossil Lagersta« tten, especially those
displaying soft-part preservation. Paradoxically, in recent
years, the research programme in this area has been
largely on the taphonomy of Lagersta« tten and the possible
reasons for exceptional preservations. The documentation
of primary systematics of many of these extraordinarily
well-preserved biotas has lagged far behind.

The reader will realize that this review makes no
pretence to completeness. So far as it has an aim, it is to
touch on areas that perhaps have su¡ered from either rela-
tive neglect or are particularly topical. To forestall
justi¢able criticism I should say that among the many
potential topics that will not be considered here are: the

problem of selectivity in extinctions (see, for example,
Bennett & Owens 1997), apart from some passing
comments at the end of this paper any detailed discussion
of the mathematical treatment of diversity (see, for
example, Patterson & Fowler 1996; Solë & Bascompte
1996; Solë et al. 1996); the questions of stratigraphic
completeness and the sampling of the fossil record (see,
for example, Foote & Raup 1996; Marshall 1997); variable
species longevity (see, for example, Levinton & Ginzburg
1984; Kammer et al. 1997); biogeographical changes
engendered by continental splitting; the in£uence of
seawater chemistry (Grotzinger 1990; Harper et al. 1997);
the patterns of onshore^o¡shore diversity (see, for
example, Sepkoski 1991); the merits (or otherwise) of
Linnean taxa versus cladistic methodologies (see, for
example, Sepkoski & Kendrick 1993; Foote 1996); the
stability of taxonomic concepts (Hughes & Labandeira
1995); and the important role of refugia as ècological
bunkers' in times of adversity and also èvolutionary
museums' of archaic diversity (see Oji 1996). Finally, no
serious attempt is made to cover the in£uence of climate
on diversity in terms of either originations (see Cronin
1985), extinctions (Clarke 1993; Coope 1987, 1994), or
faunal replacements (Janis 1989; Jackson 1994). At the
risk of an eclectic journey the reader is invited to continue.

2. ANCIENT DIVERSITY: POTENTIAL PITFALLS

In assessing ancient diversity there appear to be two
fundamental problems, which need to be reviewed before
I comment, with equal brevity, on four particular topics
(½3^6). The ¢rst problem concerns the divergence in
approach between those who seek regularities and, if not
laws, at least a degree of predictability in the behaviour
and fate of ancient ecosystems. Whereas the antithesis is
by no means absolute, an alternative view prefers to
emphasize the contingencies of history and often by impli-
cation the lack of discernible trends or patterns.

At ¢rst sight the attempt to seek regularities in the
history of diversity appears to be frustrated by the
obvious changes in the biosphere in the last 4 billion years
(Ba). Most obviously this applies to the Archaean (3.8^
2.5 Ba), when ecosystems may have been only occupied
by prokaryotes (see Schopf 1983). The emergence of
eukaryotes, which in terms of the fossil record apparently
can be traced back to about 2.1 Ba (Han & Runnegar
1992; but, see Doolittle et al. 1996), presumably de¢ned
the onset of more complex ecosystems, but direct evidence
for signi¢cant reorganization of microbial communities is
at present e¡ectively restricted to two areas.The ¢rst is the
documentation in the changes in the diversity of the
microbially generated structures known as stromatolites,
and in particular a dramatic decline in their diversity in
the later Proterozoic (Walter & Heys 1985). This decline
is widely attributed to the rise of grazing metazoans
(Garrett 1970; Awramik 1971; Walter & Heys 1985), but
abiotic explanations such as changes in the carbonate
saturation of sea water seem as reasonable (Grotzinger
1990). There is a further complication in as much as the
relationships between macroscopic expression of the stro-
matolite and the complexity or otherwise of the microbial
communities remain obscure. The second area where an
understanding of Precambrian diversity has advanced
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Figure 1. The diversity curve of marine metazoan families,
and their distinction into the three great evolutionary faunas,
identi¢ed by factor analysis, and referred to as Cambrian (I),
Palaeozoic (II) and Mesozoic^Cenozoic or Modern (III). The
residual area above the main curves corresponds to that part of
the diversity that cannot be accommodated by the three main
statistical factors. The ¢gure of 1750 (right) is the estimated
number of marine families in Recent oceans, many of which
have a low fossilization potential. The smaller diversity curve
inserted top-left is redrawn from Phillips (1860). (Main ¢gure
is redrawn from Sepkoski (1981, ¢gure 5). Reprinted with
permission from Paleobiology and the Paleontological Society.)
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considerably is the depiction of protistan diversity, espe-
cially in terms of acritarchs (Knoll 1994). Even with the
appearance of the ¢rst animals, whose origins may be
deeper in the Proterozoic than the fossil record at present
indicates (Wray et al. 1996; see, also, Conway Morris 1997),
the ecology of the planet seems to have operated at an
e¡ectively microbial level for at least 3 Ba.

In this regard the subsequent Cambrian èxplosion'
(ca. 545^520 Ma) remains one of the fulcrum points in
the history of diversity with the origin and radiation of
macroscopic metazoans. It is, nevertheless, a matter of
contention as to the extent to which the Cambrian radia-
tion is an èxplosion' of fossils whose newly acquired
skeletal hard-parts breached a taphonomic threshold as
against a genuine revolution in diversity. This potential
dilemma was explored by Runnegar (1982a), but the
recent reviews of the fossil record in this interval (for
examples, see Lipps & Signor 1992; Brasier 1992; Conway
Morris 1998a) treat the Cambrian èxplosion' as an evolu-
tionary event of the ¢rst magnitude. That the trace fossils
show a parallel increase in diversity (see Jensen 1997) is a
strong argument in favour of the latter view, although it
would still be possible to argue that the Cambrian èxplo-
sion' is more the result of a scaling-up in size, perhaps
because of changes in the concentration of atmospheric
oxygen, rather than a genuine series of innovations. The
problem of cryptic diversity is returned to in a later
section (½6), but here we need only note that at least so
far as the immediately preceding Ediacaran faunas are
concerned, evidence continues to grow for phyletic links
with life in the Cambrian (for examples, see Gehling 1991;
Conway Morris 1993a; Fortey et al. 1996; Gehling & Rigby
1996;Waggoner 1996; Fedonkin & Waggoner 1997).

The impact of the Cambrian èxplosion' in other ways is
perhaps still less fully appreciated. For example, Logan et
al. (1995) drew attention to a signi¢cant shift in the ratio of
carbon isotopes (d13C) in certain hydrocarbons extracted
from sediments spanning the Proterozoic^Phanerozoic
boundary. This they interpreted as a consequence of the
evolution of planktonic grazers, possibly arthropods (see
Butter¢eld 1994, 1997) adept at harvesting suspended
organic matter which, after passage through the gut, was
encapsulated into faecal pellets which then rapidly
descended to the sea £oor a kilometre or more below.
Before the evolution of these grazers the descent of
organic matter through the water column would have
been markedly slower because much of it would have
been as minute particles of marine `snow'. The transition
from a microbial ecosystem to one with metazoan
harvesters probably had a profound e¡ect on ocean chem-
istry, especially in terms of oxygen demand mediated by
bacterial utilization of the slowly sinking particulate
`snow' (Logan et al. 1995).

The literature is replete with many other examples of
subsequent changes in Phanerozoic diversity and their
ecological consequences. Of these the invasions of the
land (for examples, see Labandeira & Beall 1990;
Kenrick & Crane 1997) and air (Crepet 1979; Feduccia
1980; Labandeira & Sepkoski 1993) perhaps are the most
familiar, but others e.g. increasing degrees of sediment
bioturbation (for examples, see Droser 1991; Droser &
Bottjer 1993), taphonomic feedback of substrate types
(Sprinkle & Guensburg 1995; Kidwell & Brenchley 1996),

the recruitment to and the reorganization of planktonic
ecosystems (see Rigby 1997) are also highly signi¢cant.
Ironically, those workers who emphasize the many histor-
ical contingencies in the history of diversity are often
particularly vociferous in their denial of what to others
appears to be strong evidence for increases in the
complexity (Valentine et al. 1994; see, also, McShea 1996)
and sophistication of both biotas and ecosystems. Such
trends seem to deserve the name of progress (Rosenzweig
& McCord 1991; see, also, Jackson & McKinney 1990),
which need not be equated with orthogenesis.

The second general problem concerns the question of
scales of analysis in terms of geological time. A good
example is that given by McGhee (1996) in his discussion
of the late Devonian (Frasnian^Fammenian) mass extinc-
tion. The type and style of extinction di¡ers according to
whether the analysis is done at the level of epoch, stage,
substage or subzone (¢gure 2).Which is the `true' pattern,
or at least the one with greatest explanatory value? The
crux of this problem seems to be the problem of deciding
whether the pattern of biotic change viewed on short time-
scales ( ècological time') may be extrapolated seamlessly
to the long-term intervals of èvolutionary time', or
whether emergent properties occur that would remain
invisible to observers, such as ourselves, if a fossil record
happened to be unavailable. Whereas strong claims have
been made for such emergence, especially in terms of
species selection (but, see Budd & Johnson 1991;
Lieberman 1995) and mass extinctions (but, see Jackson
& McKinney 1990), it is not yet clear the extent to which
such principles actually govern the history of diversity.The
main purpose of this paper is to review four speci¢c areas
to further our understanding of the changes in diversity.

3. THE PROBLEM OF RAPID DIVERSIFICATION

A survey of the marine fossil record (Sepkoski 1981,
1997) reveals three notable episodes of signi¢cant diversi-
¢cation: the early Cambrian, the mid Ordovician and the
Cenozoic (¢gure 1). At present, the ¢rst of these, the
Cambrian èxplosion' has attracted considerable attention,
in part because of the realization of the signi¢cance of
Burgess Shale-type faunas (Conway Morris 1998a) and
the interest in the advances in the molecular biology of
bodyplan development and its relevance to the origin of
metazoan bodyplans (Conway Morris 1994a; Valentine et
al. 1996; Erwin et al. 1997). The abruptness, or otherwise,
of the Cambrian èxplosion' is predicated on both the
possibility of an extended Proterozoic history and the
phyletic relevance, if any, of the Ediacaran faunas. If
present attempts to identify plausible metazoans in the
Ediacaran assemblages (for examples, see Conway Morris
1993a; Waggoner 1996; Fedonkin & Waggoner 1997) win
favour, then the interval for this radiation might be
extended to at least 30 Ma. Alternatively, even if the
evidence for at least some Ediacaran fossils being unequi-
vocal metazoans is accepted, this could still represent a
radiation largely independent of the subsequent Cambrian
event (Conway Morris 1993b). Some support for this idea
may come from the record of Ediacaran trace fossils.
Although a considerable diversity of Ediacaran ichnotaxa
have been described, and some with peculiar morphology
interpreted as representing `bizarre' behaviours (Crimes
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Figure 2. An illustration of the problems of the analysis of a
geological event, speci¢cally the late Devonian (Frasnian^
Fammenian) mass extinction, according to the resolution of the
time-scale and stratigraphic unit chosen. The upper ¢gures refer
to familial diversity, respectively at the stratigraphic level of
epoch (a) and stage (b). The lower ¢gures illustrate the extinction
as resolved at ¢ner stratigraphic levels. (c) Illustrates the diversity
of brachiopods in New York State and (d) the southern Urals of
Russia, whereas (e) depicts events as seen as the subzonal level
with reference to two important sections in Germany. (Figures are
redrawn from McGhee (1996, ¢gures 3.1, 3.2, 3.4 and 3.5 respec-
tively). Reprinted with permission from Paleobiology and the
Paleontological Society (a,b), Canadian Society of Petroleum
Geologists (c,d), GAGP (Go« ttingen) and E. Schindler (e).
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1994), a reinvestigation of the record suggests this diversity
has been exaggerated so that the Ediacaran record of trace
fossils in fact was very impoverished (S. Jensen, personal
communication). The revolution in benthic behaviour,
and by implication neurological complexity, in the
succeeding Cambrian would be consistent with the key
steps in this radiation being achieved very rapidly,
perhaps in less than 10 Ma. These uncertainties have an
obvious bearing on the di¤culties of identifying plausible
triggers to explain the initiation of the Cambrian èxplo-
sion', although the role of atmospheric oxygen or tectonic
recon¢guration (Kirschvink et al. 1997) remain perennial
favourites.

The Cambrian diversi¢cations are of pivotal impor-
tance both for the establishment of a wide range of
metazoan designs, codi¢ed in orthodox taxonomy as
phyla, and a corresponding occupation of marine ecolo-
gies. Nevertheless, as has been long recognized
diversi¢cation at the lower levels of the taxonomic hier-
archy, such as the family, seems to have been more
restricted. The ¢gures for the number of genera and
families will certainly require upward revision as our
knowledge of Cambrian faunas, especially those preserved
in Burgess Shale-type settings (Chen et al. 1996) and also
by phosphatization (Mu« ller & Hinz-Schallreuter 1993),
continues to improve. Nevertheless, in comparison with
the preceding Cambrian, the subsequent radiations in the
Ordovician (¢gure 1) remain far more dramatic in terms
of increase of diversity, notably of cnidarians, brachiopods,
cephalopods, echinoderms and ectoprocts. Not only that,
but the main increase in diversity appears to have been
achieved in only a few million years, at least for a
number of important shelly groups that included the trilo-
bites, brachiopods and certain molluscs (Miller & Foote
1996). Although new evidence supports the biological
distinctiveness of these emerging faunas (see Sprinkle &
Guensburg 1995) and the pattern of diversi¢cation can be
modelled with some detail, as yet we still have no convin-
cing explanation for what may have initiated this
Ordovician radiation. Thereafter, the diversity, at least of
well-skeletonized marine families, appears to have stayed
at a plateau, possibly representing an equilibrium, for
about 200 Ma and weathering two signi¢cant mass extinc-
tions (late Ordovician, late Devonian) (¢gure 1). The origins
of the third main rise in marine diversity can be traced to
the beginning of the Jurassic, and notwithstanding the end-
Cretaceous extinctions this diversity has continued to rise
towards the Recent. Until very recently it seems that our
planet housed the richest biotas it had ever seen.

4. EXTINCTIONS

Parallel to the depiction of the history of diversity there
has been extensive documentation of the evidence for past
extinctions, notably the ¢ve mass extinctions. Of these the
episode at the end of the Cretaceous (K/T) has attracted
unparalleled attention. A convenient distinction between
mass and background extinctions receives some support
from an analysis of the factors favouring species survival
in certain groups, such as the molluscs (Jablonski 1989),
according to the severity of the event. On the other hand,
Raup's (1991, 1992) formulation of the so-called `kill curve'
suggests that its end-membersörelatively benign with

limited loss of species to planet-wide trauma respec-
tivelyöare connected by a continuum of increasing
disaster. Another in£uential view that has received wide
support is Gould's (1985) identi¢cation of tiers of in£uence
for evolutionary process that transcend those operating at
the level of the species and presumably are open to
neodarwinian explanations. In this formulation mass
extinctions are said to play a key role, in resetting ecolo-
gies and shaping the future development of post-
catastrophe diversity (see, also, Courtillot & Gaudemer
1996). But are matters as simple as this?

The one instance that has received general agreement is
the end-Permian event (Erwin 1993, 1995), marking the
replacement of the Palaeozoic faunas by those of the
Mesozoic. Given the severity of this episode (see Eshet et
al. 1995), with extreme estimates of species loss reaching
96% (Raup 1979), it is not surprising that after the
protracted time for recovery (see below) the marine
communities were markedly di¡erent. Yet there is still
some danger of exaggeration. Thus, once important
groups of Palaeozoic marine organisms such as the trilo-
bites (Fortey & Owens 1990) and rugose corals (Scrutton
1988) were already small components of even early
Permian ecosystems. Other groups, such as the ammo-
noids and sea urchins, certainly su¡ered badly but
subsequently rebounded to even greater levels of success.
The possible pattern of extinction in the gastropods is
particularly intriguing (Erwin 1996b; Erwin & Pan
1996). This is because the post-catastrophe faunas are
markedly depauperate, yet a simple reading of the data
may be misleading. One possibility is that absences are
only apparent, and re£ect a taphonomic lacuna imposed
by a general failure of aragonitic preservation. Alterna-
tively, when theTriassic gastropods do reappear they have
some striking similarities to the preceding Permian forms.
Is this because they are so-called `Lazarus taxa', or are
they convergent with strongly homeomorphic shells?
Erwin & Pan (1996, p. 229) conclude by noting `few phylo-
genetic studies have investigated clade relationships across
the Permo-Triassic boundary, but those that have (for
brachiopods, bryzoans and asteroids) all suggest that
traditional systematics may exaggerate the magnitude of
extinctions at higher levels and miss phylogenetic links at
lower levels'. Even the celebrated transition between
brachiopod-dominated Palaeozoic seas and the post-
Permian abundance of bivalve molluscs, which had been
cast into a fortuitous correlation of respective decline and
rise by Gould & Calloway (1980), has been reanalysed by
Sepkoski (1996; see, also, Rhodes & Thompson 1993). The
Permian mass extinction certainly remains very signi¢cant
for both groups, but Sepkoski (1996) convincingly recon-
strues their histories into a new context of dynamic
interaction and competition.

In terms of three of the other mass extinctions, the
evidence for wholesale remodelling of ecosystems is rather
weaker. This is especially true of the late Ordovician event
(see Droser et al. 1997), which is also enigmatic in as much
as its proposed correlation with a short but severe glaciation,
has no parallel with either of the other two episodes of
Phanerozoic glaciation in the Permo-Carboniferous and
Plio-Pleistocene, respectively.The Devonian mass extinction
certainly marks some signi¢cant changes in marine ecosys-
tems, especially among the reefs (Scrutton 1988; McGhee
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1996). Unfortunately the terrestrial record of animals is
rather inadequate, but that of plants does not point to any
particular trauma (Raymond & Metz 1995; Willis &
Bennett 1995). The Triassic event also has some noteworthy
victims, including the conodonts, but here too the di¡er-
ences between pre- and post-catastrophe biotas perhaps are
not that dramatic in terms of overall composition.

Such reservations concerning the severity and ultimate
e¡ects of mass extinctions would, however, appear to be
dispelled when the K/T event is considered. The over-
whelming evidence for an impact (iridium, shocked
mineral grains (especially quartz), stishovite, microtektites
with relict glass, extraterrestrial amino acids, microdia-
monds; see Koerberl (1996) for a recent review) and
severe environmental perturbations (soot and pyrotoxins,
acid rain, the collapse of oceanic productivity, tsunamis),
underline the catastrophic nature of this event.Yet impor-
tant quali¢cations need to be made. First, it is agreed that
some signi¢cant extinctions occurred well before the time
of impact, most notably in the inoceramid bivalve molluscs
(MacLeod & Orr 1993) and possibly the rudists (Johnson
& Kau¡man 1996). In other cases the disappearance of a
group at the K/T interval may be more apparent than
real. In the case of the ammonites there are occurrences
in Seymour Island, albeit as loose specimens in £oat, up
to 13m above the locally de¢ned K/T boundary. These
may be reworked from underlying Maastrichtian strata,
but are possibly genuine survivors (Zinsmeister et al. 1989;
see also table 1). In addition, in a number of Cretaceous
ammonites there is evidence that the shell had become
internal to enveloping soft-tissues (comparable to the
living Spirula) (Doguzhaeva & Mutvei 1993), and it is
possible that the ammonitic survivors of this mass extinc-
tion were e¡ectively soft-bodied (Lewy 1996). In other
cases the longer-term di¡erences across this boundary are
muted or even negligible (MacLeod et al. 1997). This
appears to be the case for such groups as the foraminifers,
brachiopods, gastropods, echinoids, ¢sh, and terrestrial
plants. The emphasis on catastrophism has been rein-
forced, however, by the demise of the dinosaurs and the
subsequent radiation of the mammals, including of course
the primates. Here too there may need to be some quali¢-
cation of the evidence.To date, the only strong evidence for
dinosaurs living immediately before the impact, and
possibly surviving for a short period afterwards (Rigby et
al. 1987; see, also, Argast et al. 1987; Lofgren et al. 1990),
comes from North America. There is evidence to suggest
that this region su¡ered extensive devastation not only
because of its proximity to the impact site at Chicxulub,
Mexico, but also because of the oblique nature of the
impact and the movement of the ejecta curtain north-
wards (Schultz & D'Hondt 1996). Whereas evidence for
Maastrichtian dinosaurs is widespread, in at least some
areas there is a possibility of extinction before the impact
(see, for example, Galbrun 1997).

There is another feature of the aftermath of mass
extinctions that deserves further consideration, and that is
the extraordinarily protracted lag-times for recovery to
ecological stability and biotic diversity. This certainly
seems to be the case for the end-Permian and Cretaceous
events, whereas for at least the late Ordovician extinctions
recovery appears to have been relatively rapid and this
feature may further underline the apparent peculiarity of

this event. The evidence for the post-Permian trauma has
long been appreciated in terms of the conspicuously
depauperate Lower Triassic faunas (see, for example,
Schubert & Bottjer 1995). More recently an even grimmer
scenario has been presented by Bottjer and co-workers
(1995, 1996), who record a notable abundance of stromato-
lites that grew in what are interpreted as open marine
settings. Whereas other such examples are known from
elsewhere in the Phanerozoic, including the present day
(Rasmussen et al. 1993; Reid et al. 1995), they remain
exceptions. The relative abundance of the Triassic stroma-
tolites recalls the state of a¡airs in the Precambrian when,
as previously noted, the abundance of stromatolites is
generally interpreted as a direct re£ection of the absence
or at least ine¡ectiveness of metazoan grazers. As also
mentioned previously, the connection between metazoan
activity and stromatolite diversity is not accepted by all
workers, and Grotzinger (1990) has invoked an hypothesis
that looks to amounts of carbon dioxide and degrees of
carbonate saturation in the oceans as the factors control-
ling stromatolite growth. This too may provide a link
with the Permian debacle, because Knoll et al. (1996; see,
also, Grotzinger & Knoll 1995) have argued that rapid
ocean turnover and release of carbon dioxide led to
severe hypercapnia in animals and consequent physiolo-
gical stress. In any event for the marine environment of
the Triassic to be pushed towards a situation reminiscent
of the Precambrian, underlines yet further the severity of
the Permian extinctions and the scope of the ecological
vacancies awaiting reoccupation later in the Mesozoic.
On present evidence it seems more likely that the
protracted lag-time in theTriassic was caused by extrinsic
stress, rather than by an innate inability for communities
to reaggregate and restore diversity.

The case for protracted ecological instability in the
aftermath of the Cretaceous event is better documented,
although overall the extent of the crisis seems to have
fallen short of the equivalent early Triassic episode.
Although the degree of stratigraphic resolution is still rela-
tively crude, it is already clear that there was a time-scale
of both disaster and more importantly recoveries, with
some environments and biotas appearing to rebound
much more promptly than others (table 1). This compila-
tion is very preliminary, and apart from considerable
uncertainty about the time intervals, especially at the
shorter end of the scale, it also begs the question of what
is meant by the term `recovery'. Nevertheless, such a
dissection of response to the catastrophe is overdue, as is
an extensive investigation of regional variations (Barrera
& Keller 1994; MacLeod 1995; Keller et al. 1997; but, see
Raup & Jablonski 1993).

The evidence for perturbations, before eventual
recovery, comes from several sources. These include the
slow re-emergence from unspeci¢ed refugia of the so-
called `Lazarus' taxa, such as certain generalized micro-
morphic brachiopods (see, for example, Surlyk &
Johansen 1984; see, also, Johansen 1989a,b). It is even
more convincingly demonstrated in terms of the dramatic
£uctuations in population size, morphological variability
and species composition in the communities of planktonic
foraminifera (Gerstel et al. 1986, 1987). Enhanced vital
e¡ects of autotrophic fractionation of carbon isotopes in
the coccolithophorids may also be attributed to ecological
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trauma (Stott & Kennett 1989). Evidence for considerable
perturbations in the oceanic environment are evident from
£uctuations in the record of carbon isotopes (see, for
example, Stott & Kennett 1989; Zachos et al. 1989) and
also barium (Zachos et al. 1989) which is a tracer for
marine productivity. The extraordinary instability of the
oceanic ecosystems has also been emphasized by a study
of the magnetic susceptibility of sediments either side of
the boundary (D'Hondt et al. 1996). This methodology is
especially appropriate for deep-sea cores, both because of
the ease of technical operation and more importantly its
sensitivity to the ratio between the calcareous component
of the sediment, derived from the infall of the plankton,
and the clay fraction whose contained iron provides the
magnetic signature. Those sediments deposited before the
K/T impact show muted variations in magnetic suscept-
ibility (¢gure 3), but in the earliest Tertiary there is
signi¢cant ampli¢cation. D'Hondt et al. (1996) plausibly
suggest that this enhanced ampli¢cation results from a
stressed ecosystem with a reduced ability to bu¡er climati-
cally forced Milankovitch cyclicity, possibly compounded
by the interference on solar insolation by an equatorial
ring of orbiting debris (Schultz & Gault 1990). In addition
a detailed examination of the relation between the
magnetic susceptibility and concentrations of carbonate

reveals that although in general there is the expected
inverse relation, when the concentration of carbonate is
low this relation becomes positive. D'Hondt et al. (1996)
suggest that one explanation for the latter observation is
that in the immediately post-catastrophe ocean the
palaeoproductivity of the siliceous plankton (diatoms and
radiolaria) might have been negatively correlated with the
calcareous plankton. This too could be consistent with
ecological instability. This evidence agrees with the data
from microfossils in suggesting considerable oceanic
instability persisting for at least 1 Ma (table 1). Evidence
from benthic molluscan faunas indicates an even more
protracted period for recovery (Hansen et al. 1993).
It seems, therefore, that the earlyTertiary marine envir-

onment showed recovery across a range of timescales, and
possibly also geographies.Whereas it could be argued that
di¡erent environments were more or less sensitive to both
perturbation and subsequent recovery, the immense time
before some sort of normality returned suggests that
extrinsic forcing (e.g. atmospheric composition, especially
enhanced CO2, or the existence of orbiting ejecta derived
from the original impact) were more important.

So much for the oceans, what of terrestrial ecosystems?
Apart from the immediate post-impact `fern-spike' (table
1) in North America, plant communities were evidently
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Table 1. Time-scales for destruction and recovery of biotas across the Cretaceous^Tertiary boundary

(All ¢gures are approximate and re£ect uncertainties of sedimentation rates, magnetostratigraphy and radiometric dating.)

time e¡ect

1 s annihilation around impact site (ca. 30 000 km2) of Chicxuluba

1min earthquakes, Richter scale tenb

10min spontaneous ignition of North American forestsb

60min impact ejecta crosses North Americac

10 h tsunamis swamp Tethyean coastal marginsb

1 week ?¢rst extinctions
9 months dust clouds begin to cleard

10 years very severe climatic disturbance (especially cooling) endse

1000 years continental vegetation begins to recover: end of `Fern Spike'f

1500 years initial recovery of some deeper-water benthic ecosystemsg

7000 years recovery of some deeper-water benthic ecosystemsg

70 000 years oceanic anoxia diminishesh

100 000 years ?¢nal extinction of dinosaursi

300 000 years ?¢nal extinction of ammonitesj

500 000 years large £uctuations in oceanic ecosystems begin to moderatek,l

1 000 000 years open oceanic ecosystems partly recoveredm

2 000 000 years marine mollusc faunas mostly recoveredn

2 500 000 years global ecosystems normall

Sources of information:
aThis assumes a crater diameter of ca.180 km (Hildebrand et al. 1995).
bSeeToon et al. (1997).
cSeeAlvarez et al. (1995).
dSee Covey et al. (1994).
eSee Pope et al. (1994).
fSeeTschudy & Tschudy (1986); no precise estimate of the duration of the `Fern Spike'appears to be available.
gSee Coccioni & Galeotti (1994); these data refer to Spanish stratigraphic sections and elsewhere the benthic foraminifera seem to have
been less e¡ected (see, for example, Kaiho1992).
hSee Kajiwara & Kaiho (1992); this section is fromJapan andmay not be representative of other areas.
iSee Rigby et al. (1987) for a possible instance, but Lofgren et al. (1990) for a rebuttal.
jSee Zinsmeister et al. (1989) for possible post-catastrophe ammonites, and also Marshall (1995).
kSee Barrera & Keller (1994) for data based on foraminiferans.
lSeeAlcala-Herrera et al. (1992) for data based on calcareous nannoplankton.
mSee D'Hondt et al. (1996), in addition many other workers on microfossils have quoted similar recovery time.
nSee Hansen et al. (1993).

 rstb.royalsocietypublishing.orgDownloaded from 

http://rstb.royalsocietypublishing.org/


334 S. ConwayMorris Evolution of diversity

Phil.Trans. R. Soc. Lond. B (1998)

0 60 120 0 60 120

405

406

407

408

409

100 80 60 40 20 00100 80 60 40 20

% CaCO3 % CaCO3

30/
31N

29R

29N

28R

28N

Magnetic Susceptibility

Ma
64

.5
4

64
.9

1
K

-T
   

65
.7

3
66

.6
0

Figure 3. A comparison of the sedimentary record at Deep Sea Drilling Project Site 528 (South Atlantic) in terms of magnetic
susceptibility (solid curve) and carbonate content (solid line) across the Cretaceous/Tertiary (K/T) boundary. The magnetostra-
tigraphy and radiometric ages (Ma) are depicted on the left-hand side and the right-hand column is an enlargement of the K/T
section; ¢gures refer to metres below the sea £oor with the K/T boundary at 407.31m. The magnetic susceptibility is largely
controlled by iron concentrations, which occur mostly in detrital clays. The carbonate is largely derived from calcareous micro-
plankton, including coccolithophorids and foraminifera. The ¢gure emphasizes the instability of the post-catastrophe oceanic
system in comparison with the latest Cretaceous (from D'Hondt et al. 1996; modi¢ed with permission of the publisher, the Geolo-
gical Society of America, Boulder, CO, USA. Copyright H 1996 Geological Society of America).

 rstb.royalsocietypublishing.orgDownloaded from 

http://rstb.royalsocietypublishing.org/


hard-hit (see, for example, Johnson & Hickey 1990), but
made a rapid recovery (see Tschudy & Tschudy 1986).
Discussion of pre- and post-impact £oras, however, is not
straightforward because in the early Tertiary there were
also signi¢cant long-term climatic changes (see Wolfe
1990). Although the radiation of the mammals has
received wide attention, only recently has it become a
focus for quantitative investigations which point to a very
rapid radiation (J. Alroy, personal communication).

As was ¢rst construed, the impact hypothesis for the K/
T event emphasized global darkening resulting from the
ejection of rock dust and, it was subsequently realized,
soot into the upper atmosphere as the forcing mechanism
for extinction by both the cessation of photosynthesis and
climatic perturbations, especially cooling. This was no
doubt highly deleterious, but present estimates suggest
that severe darkening did not persist for more than a few
months and that the postulated plummeting of surface
temperatures was o¡set by the heat reservoir of the
oceans so that climatic disturbances may have been severe
rather than catastrophic (Covey et al. 1994). It is also
possible that the trauma was enhanced by the production
of acid rain, with a sulphur source either in the bolide itself
or vaporized from the Chicxulub impact site that was rich
in anhydrite (CaSO4).

Paradoxically the main accumulation of data pertaining
to the K/T impact has led to the comparative neglect of
the biological e¡ects of other impacts. In part this is prob-
ably because a rather extensive search for extraterrestrial
signatures at other stratigraphic intervals recording mass
extinctions has been for the most part negative (Orth et
al. 1984, 1986; McGhee et al. 1986; Goodfellow et al. 1992;
Erwin 1995) or even when detected (Hodych & Dunning
1992; Bice et al. 1992; Claeys & Casier 1994) still seems to
be inadequate as a forcing mechanism. Nevertheless,
recent calculations of the energy released from main
impacts (¢gure 4) are sobering. In particular the calcula-
tions by Toon et al. (1997) deserve detailed consideration.
Some e¡ects, such as large earthquakes and local blast,
are perhaps more germane to the fragile infrastructures of
our civilization and may be less signi¢cant in terms of the
biosphere as a whole. Others, however, are certainly not.

Calculations are, of course, constrained by the frequency
of impact and the amount of energy released which is a
function of both size of the bolide and its impact velocity.
Signi¢cant danger, however, is imposed by impact ener-
gies in excess of about 106 megatons, which if the infall
rates are calculated correctly will occur on average about
once every 10^50 Ma. In such cases the prospects are
hardly encouraging. As was almost certainly the case in
the K/Tevent lofting of ¢ne-grain particles, be they dust,
soot or sulphate aerosols, lead to global darkening and the
collapse of photosynthesis (¢gure 5). Toon et al. (1997)
estimate such disasters should occur approximately every
5^10 Ma. Only more recently has consideration been
given to the e¡ects of the generation of large tsunamis
(¢gure 6), which although not necessarily global would be
locally devastating across the continental shelf and
lowlands (see, also, Jansa 1993). At impact energies in
excess of about 107 megatons the kinetic energy released
by the infalling debris is transformed into radiant heat,
that can lead to spontaneous ignition of terrestrial £oras
in areas substantially in excess of the area of the present-
day USA (¢gure 7).

Where then is the evidence for these traumatic episodes
in the geological record? In an investigation of the
Montagnais impact structure, about 45 km diameter and
formed about 51 Ma ago, Jansa (1993) has noted the lack
of evidence for extinction, so proposing that whatever local
destruction is caused only in the case of comets with a
nuclear diameter in excess of about 4 km is a real threat
imposed. As noted previously, the evidence for any mass
extinction being driven by extraterrestrial impact is,
apart from the K/T event, at best weak and for at least
the late Ordovician (Orth et al. 1986) and end-Permian
event (see, for example, Clark et al. 1986) apparently
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entirely lacking. Nor do the puzzles end here. A potentially
gigantic crater has been identi¢ed in the Kalahari desert of
South Africa, possibly up to 350 km diameter, and dated
at about 145 Ma (Koeberl et al. 1997). The near coinci-
dence with the Jurassic^Cretaceous boundary is
intriguing, yet to date the evidence for severe extinctions
across this interval is limited.

The proponents of coordinated stasis, a concept
returned to in ½5, also identify times of rapid turnover
and it might be possible to equate some of these with
extraterrestrial impacts. It is also likely that some so-
called èvent-horizons', the stratigraphic potential of
which has received close attention by stratigraphers, are a
consequence of highly energetic collisions. Nevertheless,
the fossil record of extinctions appears to show little
evidence for catastrophic extirpation, although one
wonders if the vagaries of range completeness (or lack
thereof ) and taxonomic splitting are masking some
events. It is also the case that sedimentologists and strati-
graphers are seldom attuned to the possible evidence for
impact driven processes, not least because, so far as I am
aware, there are no coherent models for sedimentological
consequences of the spontaneous ignition of several
million square kilometres of land, followed by its part
inundation beneath a 50m high tsunami.
While the in£uence of extraterrestrial impacts is surely

more important than presently realized, certainly it may
be premature to assume that mass extinctions per se,
however caused, are the leading force in shaping the
history of diversity (see, also, Jackson & McKinney
1990). Nor need they represent the only extrinsic factors
that pummel the biosphere. The role of Milankovitch-
driven climatic cycles in stressing the environment and
promoting extinctions has received the forceful advocacy
of Bennett (1997). Here too we have the possibility of
recurrent stress and a mechanism that could, in principle,
be equated to the turnover pulse hypothesis of Vrba (1995).

Yet doubts remain (Conway Morris 1998b). In part this is
because of the di¤culty in correlating Milankovitch-
driven climate change with any known extinction,
combined with the fact that most species' durations far
exceed the observed cyclicities. With such low species
mortalities versus the frequencies of oscillation, this
makes the hypothesis di¤cult to test. There is also the
uncertainty of deciding whether the much-enhanced
Milankovitich cyclicities of the last couple of million
years, and their accepted connection to wildly oscillating
glacial and interglacials, would apply with equal force in
a past where the in£uence of such oscillations was appar-
ently more muted. Not only that, but as Bennett (1997)
himself is at pains to point out, the possibly chaotic beha-
viour of the Solar System (for examples, see Laskar 1989;
Sussman & Wisdom 1992) may mean that the orbital
forcing of the deep past is such that the present cyclicities
provide a guide rather than a key to environmental stress
and potential extinction.

5. THE STABILITY OF COMMUNITIES

Ecologists have long emphasized the contrasting views
of community structure as formulated by the individua-
listic and haphazard view of H. A. Gleason, versus the
recurrence and ecological interlocking identi¢ed by F. E.
Clements (and subsequently C. Elton) (see Walter &
Patterson 1994; Jablonski & Sepkoski 1996). In terms of
the fossil record of the most recent past, especially with
respect to terrestrial £oras, there has been a strong emphasis
on the Gleasonian view whereby, driven by climatic shifts,
plant species reaggregate in novel combinations so that
the present-day distributions and associations may have
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no precise counterpart in £oras even a few thousand years
old (Overpeck et al. 1992; see, also, Bennett 1997). Similar
conclusions have been reached by Coope (1979, 1987) in
his extensive analyses of Quaternary beetle assemblages,
which also point to an exceptionally dynamic and unpre-
dictable history of migration and reassociation. These
in£uential studies refer to relatively short periods of geolo-
gical time, and co-occur with the very marked shifts in the
environment imposed by the recurrent swings between
glacial and interglacial regimes. A very much longer
perspective was taken by Buzas & Culver (1994), who
documented the changing species compositions of commu-
nities of shallow marine benthic foraminifera of the North
American Atlantic Coastal Plain during much of the
Cenozoic. In this case, embayments (known as the
Salisbury and Albemarle embayments) were successively
isolated and reconnected with the main species reservoir
of the open shelf by regressions and transgressions respec-
tively. Buzas & Culver (1994) demonstrated that each
reimmigration established a community of benthic forami-
nifera with a markedly distinct taxonomic pro¢le, and in
this sense represented only a subset, apparently drawn at
random, of the main species pool.

This turbulent view of diversity, as expressed in
communities, is almost directly antithetical to a wide-
spread identi¢cation of ancient communities as stable,
recurrent entities with such properties as persistence,
stasis, ecological similarity, and self-regulation. This
notion of community stability that is only occasionally
punctuated by turnover and extinction encompasses quite
a wide range of views. Nevertheless, broadly consistent
approaches have been presented both by some palaeobota-
nists (see DiMichele & Phillips 1996), as well as by
extensive series of investigations in shallow marine
communities (for examples, see Aberhan 1993; Miller
1993; Brett et al. 1996; Schopf 1996; Tang & Bottjer 1996;
see, also, DiMichele 1994), and also reef ecosystems
(Pandol¢ 1996). Not all palaeoecologists see such patterns,
and in particular trenchant criticisms of the general
concept of community stability as now enshrined in the
concept of coordinated stasis has been o¡ered by Alroy
(1996). This analysis deserves particular attention,
because it is based on a carefully prepared database of
Tertiary North American mammals and also on account
of the exactly formulated tests for the several hypotheses
connected to the depiction of coordinated stasis. Signi¢-
cantly, Alroy (1996) failed to identify either sudden
turnovers of diversity or a correlation between the rates of
extinction and origination. A critique in a related vein is
o¡ered by Bambach & Bennington (1996). Their review,
of whether communities can in any sense be said to
evolve, is more sympathetic to the ideas of coordinated
stasis, but also notes that even within each interval of
supposed stability there is still considerable turnover.
Such ripostes may only be a part-solution to solving this
divergence of interpretation. One wonders whether the
climatic extremes of the last few million years are espe-
cially disruptive, notably for terrestrial communities (see,
also, DiMichele 1994). There is also the obvious criticism
of the problems of time-averaging (see, for example,
Bambach & Bennington 1996) and the di¤culties of
precise stratigraphic correlation in some older sequences.
These factors might conspire to impose an apparent

uniformity on community structure that originally was
much more dynamic and labile.

6. CRYPTIC DIVERSITY

Despite the biases and imperfections of the fossil record
the pattern of Phanerozoic diversity is generally accepted
to be robust. One obvious pitfall, that of the relative
proportion of soft-bodied to skeletalized taxa at various
geological intervals, deserves speci¢c mention because of
the increasing level of documentation of fossil Lagersta« tten
such as the Burgess Shale-type faunas (Conway Morris
1998a) or mid-Mesozoic Plattenkalk (Bernier & Gaillard
1994). Such an analysis, however, is not straightforward.
The ¢rst problem is that there is a spectrum of taphonomic
resistances of animals, meaning there is no simple distinc-
tion between skeletal and soft-bodied. Another problem is
the wide variety of preservations encountered in fossil
Lagersta« tten, including carbonaceous ¢lms, diagenetic
carbonate nodules, pyritization, phosphatization and
polymerized tree resin (amber). In the last case, for
example, Henwood (1993) ingeniously compared the taxo-
nomic pro¢le of insects in amber faunas from the mid
Tertiary of the Dominican Republic with those obtained
in similar circumstances by entomologists using standard
trapping techniques (e.g. light trap, fogging) to show
that, notwithstanding the exquisite fossil preservation (see
Poinar 1992), amber faunas contain comparable sampling
biases. At present, all it seems possible to conclude is that
fossil Lagersta« tten are themselves incomplete repositories
of diversity, may occur in `unusual' environments (e.g.
lagoons, deeper water), but still do not suggest that our
existing ideas of ancient diversity are hopelessly warped
by taphonomic factors.

This does not mean, however, that we can a¡ord to be
complacent because several potentially more severe
problems exist. These concern the role of phylogenetic
systematics, the apparent discrepancies between molecular
and taxonomic data, and hitherto overlooked `hot-spots'of
diversity. The ¢rst point, that of the role of phylogenetic
systematics and especially the cladistic methodology in
the context of the study of diversity has not gone unno-
ticed. In brief, present-day diversity curves are for the
most part plotted at the taxonomic level of family.
Generic databases do exist, but are largely unpublished
and seldom taxonomically up-to-date. The principal
complaint of phylogenetic systematists is that many of the
taxa are paraphyletic and even polyphyletic (see Smith
1994), and thereby give a skewed assessment of original
diversity. The most powerful demonstration of this was by
Patterson & Smith (1987) who reanalysed taxonomic data,
speci¢cally of ¢sh and echinoderms of which they have
expertise, respectively, that had been used to identify a
periodicity in mass extinctions (Raup & Sepkoski 1986).
Using criteria of phylogenetic systematics the periodicity
of extinction, in at least these two groups, vanished. Since
then the debate as to whether Linnean taxa, especially at
the level of family, can provide su¤cient proxy for diversity
has continued in a rather half-hearted and inconclusive
manner (Sepkoski & Kendrick 1993). Another area of
phylogenetic systematics that may deserve more attention in
this context is the concept of ghost taxa (see Norell 1992).
These are taxa identi¢ed as logically necessary in the
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construction of a cladogram, but unknown in actuality.
Clearly where ghost taxa are abundant, again our percep-
tions of diversity may be skewed.
The other important area of cryptic diversity concerns

the emerging discrepancies between established taxonomic
data and information inferred from molecular biology. In
brief, three categories of divergence stand out, of which the
¢rst two involve proposed times of origination. Consider
angiosperms and mammals. The palaeontological record
indicates the £owering plants originated in the early
Cretaceous, whereas following the end-Cretaceous extinc-
tions the latter underwent an important adaptive
radiation in the Paleocene that resulted in appearance of
most of the main mammal groups. The molecular data
point to a very di¡erent story. In the case of the angios-
perms, dates of divergence varying from early Jurassic to
Carboniferous are inferred (for examples, see Wolfe et al.
1989; Brandl et al. 1992; Martin et al. 1993; Laroche &
Bousquet 1995; Kolukisaoglu et al. 1995). The case of the
mammals is somewhat less dramatic, but molecular data
still suggest a signi¢cant divergence of mammal groups in
the Mesozoic (Janke et al. 1994; Hedges et al. 1996;
Springer et al. 1997), as well as discrepancies within the
Cenozoic radiation (see, for example, Frye & Hedges
1995). Similar conclusions may also apply to the diver-
gence times of some groups of birds (Ha« rlid et al. 1997).

The standard responses to these divergences in the esti-
mated times of origination are well known, and they may
be correct. The principal objection, of course, is that the
basis for the molecular estimates assumes a clock-like
behaviour for substitution. If molecular clocks periodically
run fast, then it may be easier to reconcile these data with
the fossil record. It is sometimes supposed that such
speeding-up of the molecular clock is coincident with
adaptive radiations, although accepting the consequences
of such an assumption appears to have been neglected.
An alternative source of potential confusion, again widely
acknowledged, is the lateral transfer of genetic material
(Syvanen 1994). The third possibility is to decouple
assumptions about molecular architecture and the taxo-
nomic pigeon-holing that too often accompanies the
recognition of major groups. One of the most valuable
concepts of phylogenetic systematics is that of the stem-
group, whereby the emergence of major groups is docu-
mented in the serial acquisition of characters. The
implications of this approach for the angiosperms and
mammals are interesting, albeit in somewhat di¡erent
ways. In the former case there is a highly controversial
record of pre-Cretaceous plants that have been interpreted
as having angiospermous characteristics (see Crane et al.
1995). The case of the mammals is more disputed because
the identi¢cation of such groups as the primates and ungu-
lates in the Mesozoic depends on subtleties of
interpretation, especially of the teeth. Archibald (1996),
for example, identi¢es a late Cretaceous group (the zheles-
tids) of rat-sized ungulates, but even so these come from
strata only 20 Ma before theTertiary.
The signi¢cance of both these examples may be,

however, that a substantial part of the organismal
complexity had been achieved before the adaptive radia-
tion, so that the triggersöstill obscure in the case of the
angiosperms, but evidently the ecological release in the
post-catastrophe world of the Paleocene for the

mammalsöwere those of opportunity rather than macro-
evolutionary reorganization. The implication of this for
understanding adaptive radiations could be considerable
because it implies that in at least some cases, functional
complexes were assembled over substantial periods of
geological time. Such inherency is not meant to imply
that there is an inevitability in an evolutionary outcome,
but it may favour the issue in a particular direction.

In the previous two examples at least there is a contro-
versial fossil record that could match the estimated time of
molecular divergence. There are, however, various other
discrepancies whereby the molecular data indicates a
protracted cryptic interval that predates the appearance
of the group in the fossil record. Examples include the
metazoans as a whole (Wray et al. 1996), and among the
protistans examples may be taken from: the foramini-
ferans (Merle et al. 1994; Darling et al. 1996, 1997;
Pawlowski et al. 1994, 1996, 1997; Wade et al. 1996); the
diatoms (Philippe et al. 1994); and, using biomarkers
rather than a molecular clock, the dino£agellates
(Summons 1992; Moldowan et al. 1996).

In the case of the metazoans, the assumption of a mol-
ecular clock in the case of both haemoglobin (Runnegar
1982b) and collagen (Runnegar 1985) had pointed to an
origination at least 750 Ma ago, whereas the more recent
analysis of Wray et al. (1996) indicates a substantially older
origin that could have exceeded 1000 Ma. A critical
reanalysis of these data, however, suggests that such
¢guresöarrived at by averagingömay be less reliable
than a clock-by-clock comparison. This latter approach
gives ¢gures more in line with the estimates of Runnegar
(1982, 1985), but still points to a substantial interval of pre-
Ediacaran metazoan evolution (Conway Morris 1997).
The case for cryptic evolution in the foraminifera is more
complex, because broadly there are two schools of
thought. One (Darling et al. 1996, 1997; Wade et al. 1996)
has emphasized an apparently very ancient origin for the
planktonic foraminifera, hundreds of millions of years
before their appearance in the Lower Jurassic. The
extreme branch lengths of the planktonic foraminifera is
emphasized by the other school (Pawlowski et al. 1994,
1996, 1997), who, while acknowledging an ancient origin
for the group as a whole, place the planktonics in the
crown group and suggest the very variable rates of substi-
tution have distorted the phylogeny, so that the apparently
early origin of the planktonics is an artefact. The reasons
for such extreme branch lengths in the planktonic forami-
nifera are obscure, although Pawlowski et al. (1997)
proposed that ultraviolet radiation in the upper water
column may be responsible. This needs to be tested
against other planktonic groups, such as the coccolitho-
phorids, and within the planktonic foraminifera them-
selves according to the positions they adopt in the water
column. Philippe et al. (1994) have drawn attention to a
large discrepancy in the estimated origination of diatoms
from molecular data versus the fossil record, the latter
indicating a Jurassic appearance of limited diversity
followed by a Cretaceous e¥oresence. They conclude that
a cryptic history of `naked' diatoms, possibly extending as
far back as the Precambrian, preceded their acquisition of
siliceous skeletons. Philippe et al. (1994) also review (and
reject) the alternative explanation of molecular rate
changes. This is, of course, the standard riposte of those
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anxious to reconcile times of molecular divergence with
the fossil record. This latter view raises some uncomfor-
table di¤culties. First, if molecular clocks run fast during
adaptive radiations it implies a linkage between phenotype
and molecules that are generally thought to be `invisible' to
morphology. Alternatively, clock dates could be telescoped
if the initial stages ran fast before it slowed along a hyper-
bolic function. The idea of a molecular clock àgeing' seems
to ¢nd little favour, as yet.

The case for an appearance of dino£agellates long
before the ¢rst fossil records relies on molecular data, but
in the form of chemical fossils extracted from sediments
that date back at least as far as 700 Ma (Summons 1992).
The dino£agellates are especially appropriate in this
respect because of their possessing characteristic bio-
markers, and the potential for inferring a cryptic history
of this group has been explored by Moldowan et al. (1996).

Not all the data from molecular biology, however, point to
cryptic intervals of evolution predating ¢rst appearances in
the fossil record. In an extensive analysis of the molecular
clock data of enzymes Doolittle et al. (1996) concluded that
the times of divergence of many major groups of both
prokaryotes and eukaryotes were substantially younger
than indicated in the fossil record. This analysis has not
been well received by palaeontologists, and in addition
Martin (1996) has proposed that this analysis by Doolittle
et al. (1996) is seriously confounded by the prevalence of
lateral gene transfer. For the most part such transfer,
whereas admitted for groups such as bacteria and plants,
has been considered to be unimportant in animals. Such a
view is coming under scrutiny with possible examples of
hybridization in groups as disparate as cnidarians (Odorico
& Miller 1997) and chordates (Spring 1997).

There is a somewhat di¡erent area of molecular biology
which also hints at large gaps in our knowledge of the
diversity of microbial communities, notably of prokar-
yotes. Research by Barns and co-workers (for example,
see Barns et al. 1996a,b), by using genetic probes in micro-
bial systems such as hot-springs, is revealing an
astonishing array of otherwise unknown prokaryotes.
Many show a¤nities to the group of Archaebacteria
known as Crenarchaeota, but these bacteria also expand
the taxonomic range and suggest the divisions between
the Kingdoms are less absolute than earlier thought.
Although there is reason to believe that these prokaryotic
groups (and especially the thermophiles) are phylogeneti-
cally very ancient, at ¢rst sight the prospects of
recognition in the fossil record are not encouraging.
Nevertheless, fossil hydrothermal systems are known
(Walter 1996; Knoll & Walter 1996), and there is also the
potential for diagnostic biomarkers to be recovered
(Summons 1992; Summons et al. 1996).

7. CONCLUSIONS

The pattern of diversity as seen in the fossil record
appears to be robust, but it is almost entirely based on a
traditional Linnean taxonomy (see Foote 1996). The
impact of phylogenetic systematics, with their insistence
on the recognition of monophyly may lead to signi¢cant
changes in the tabulation of diversity. Revisions may also
stem from the recognition of cryptic diversities which
may be inferred from the disconcerting gaps that appear

to separate times of origination as seen in the fossil
record, as opposed to inferences made on the basis of
molecular biology. Reconciliation of these seemingly
contradictory data may go some way to resolving the
problems in understanding the speed and extent of adap-
tive radiations if it transpires that many key features are
acquired before the `releasing event' such as a mass extinc-
tion or climatic shift.

Nevertheless, whatever shifts in the pattern of diversity
emerge, it is surely the case that the known curve (¢gure 1)
is not simply constructed on the basis of artefacts. In parti-
cular, times of diversi¢cation are real. At present it is still
very di¤cult to identify the key factors involved, and it
would be unwise to identify an over-riding and unique
principle. First, there is appeal to the many extrinsic
factors. Here one might include: marine regressions;
biogeographic changes of continental distribution and
oceanic structure that are ultimately controlled by plate
tectonics; changes in atmospheric composition and/or
ocean chemistry; massive volcanism; and changes in
substrate type as engendered by taphonomic feedback
that includes skeletal production and microbial activity.
Of those factors that are usually labelled as intrinsic there
are also many examples. They tend to be rather speci¢c,
relating to particular groups, but they are many. A couple
of examples, taken more or less at random, are: the devel-
opment of the mammalian hypocone (Hunter & Jernvall
1994); and the ability of Ordovician echinoderms to colo-
nize new substrates (Sprinkle & Guensburg 1995).

Is the history of diversity then merely the product of a
concatenation of a vast number of independent variables,
whose chance associations and timings result in what for
us is a familiar world but one which in actuality is almost
entirely contingent? Alternatively, is there a deeper math-
ematical structure to diversity? As it happens, this is a
metaphysical question (Conway Morris 1998), and reveals
the endless but potentially fruitful tension between the
belief in a bedrock of physical realities and the operation
of an historical process, with what to many of us comprises
a clear directionality. The historical dimension has formed
the bulk of the discussion here, but can we also identify a
deeper architecture that might provide a theoretical
underpinning to our enterprise? One possible avenue is
the work by Solë et al. (1997). These workers identi¢ed
self-similarity in di¡erent time series of ancient diversity,
mostly at the taxonomic level of family but also genera.
The fractal structure, it is suggested, could be consistent
with self-organized criticality. The data source they used
(Benton 1993) is open to serious, albeit inevitable, criti-
cisms of incompleteness and bias (Conway Morris 1994b).
Thus, this analysis is perhaps more suggestive than
compelling, especially as the observed power spectra
consistently only approach the expected scaling exponent
of ��1. Nevertheless, the conclusion of Solë et al. (1997,
p. 766) that `the internal biotic organization (is) the basic
component for the response of the biosphere to external
perturbations' is consistent with a widely held view of the
world-biota being interactive, coherent and possessing its
own dynamic that, while not immune to abiological
factors, was and is not in a state of recurrent lability on
account of a ceaseless pummelling by the external envir-
onment. In this sense, ecological factors are important
determinants of diversity and during rare intervals, e.g.
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early Triassic or Palaeocene, exert exceptional levels of
stress on biological communities. Certainly on any
familiar ecological time-scale such intervals of one or
more million years are protracted, but otherwise long-
term disruption that might be predicted from such factors
as cometary impacts, Milankovitch forcing, or severe
climatic £uctuations (e.g. El Nin¬ o) in point of fact appear
to be muted.

Let us accept, then, the 4 Ba history of evolution follows
a script that is largely based on biological interactions. In
this context, the role of interspeci¢c competition as a force
for moulding diversity might seem pre-eminent, yet in
actuality it has encountered intense scepticism (see, for
example, Benton 1996), in part because of the problem of
trying to de¢ne credible tests. In a three-month trial
Schluter (1994) identi¢ed competition as the driving force
in morphological divergence of stickleback ¢sh, but many
palaeontologists would question whether such results can
be extrapolated into a geological time-scale, notwith-
standing Schluter's explicit link to adaptive radiations.
On a much larger time-scale, Sepkoski's (1996) reformula-
tion of diversity plots points towards interactions between
brachiopods and bivalve molluscs. This study suggests that
even on a relatively coarse scale diversity data may reveal
competitive patterns. Sepkoski's (1996) analysis also
echoes the earlier conclusions of Raup (1981) who in
charting a secular decline in trilobite diversity noted that
it could be explained by competitive displacement. Never-
theless, one of the key objections to the notion of
competition is the persistence of survivors representing
the supposedly inferior group. How seriously should we
take this point? When we consider the range of groups
for which extirpation via an obvious mass extinction is
unlikely, e.g. graptolites, thelodonts, creodonts, or have at
best relict status as the trilobites did in the Permian or
monoplacophorans do in Recent seas, then competitive
displacement remains a reasonable possibility. This does
not provide a complete explanation. A well-known
problem concerns the encrusting cyclostome and cheilos-
tome bryozoans, in which notwithstanding the latter's
conspicuous success in overgrowth has still failed to
dislodge the weaker cyclostomes in competition for
substrate space (Lidgard et al. 1993). Nevertheless, as
McKinney (1995) points out, subsequent to the rise of the
cheilostomes the cyclostomes are forced into a temporal
refuge by restrictions in colony size and early sexual
maturation. Thus, there are other ways of staying in the
race. Not only that, but in the real world there are other
groups, notably algae, sponges and tunicates, that are
even more e¡ective at overgrowth. Competition need not
spell the doom of a group, but the net result is a more
complex and possibly faster-paced world (McKinney
1993).

In this way the history of diversity can be seen to be
progressive in as much as the diversity of species, the rich-
ness of communities and the complexity of ecologies in the
Recent appear to be unrivalled in comparison with the
geological past. To point out that bacteria are still with us
really misses the point. Not only is their èxpertise'
biochemical, but they are displaced into the refugia of hot
springs, sediments, and animal guts. As we have seen, if
the animal biosphere enters extreme crisis, as seems to
have been the case in the earlyTriassic, then the microbial

mats and stromatolites return. But if the history of diver-
sity is now clearer, how we actually got to where we are is
still obscure. With our present predicament, in one sense
this hardly matters. The appearance of our species with
unique capabilities means that, so to speak, all bets are
now o¡. The fact we are a product of evolution and repre-
sent a tiny twig on the immense tree of life is not germane
to our destruction of the richest ecosystem the world has
ever seen.
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